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Abstract
With the fast development of data collection techniques, a huge amount of complex multi-modal
data are generated, shared and stored on the Internet. The burden of extracting multi-modal features
for test instances in data analysis becomes the main fact that hurts the efficiency of prediction. In
this paper, in order to reduce the modal extraction cost in serialized classification system, we pro-
pose a novel end-to-end serialized adaptive decision approach named Discriminative Modal Pursuit
(DMP), which can automatically extract instance-specifically discriminative modal sequence for
reducing the cost of feature extraction in the test phase. Rather than jointly optimize a highly non-
convex empirical risk minimization problem, we are inspired by LSTM, and the proposed DMP
can turn to learn the decision policies which predict the label information and decide the modali-
ties to be extracted simultaneously within limited modal acquisition budget. Consequently, DMP
approach can balance the classification performance and modal feature extraction cost by utilizing
different modalities for different test instances. Empirical studies show that DMP is more efficient
and effective than existing modal/feature extraction methods.
Keywords: Multi-Modal Learning; Serialized Modal/Feature Extraction

1. Introduction

With the rapid development of data collection techniques, complicated objects can always be rep-
resented as multi-modal features, and it becomes a great challenge to design efficient and effective
methods on these accumulated multi-modal data. Therefore, efficient online information processing
approaches are urgently needed. Researchers have developed lots of online learning methods, such
as online clustering (Gentile et al., 2014), online classification (Babenko et al., 2011), and try to
speed up the learning by sampling or advanced optimization techniques (Zhang et al., 2016), these
methods always focus on instances level online problem. However, different modalities are with
various extraction expenses, and previous researches, i.e., dimensionality reduction methods, gen-
erally assume that all the multi-modal features of test instances have been already extracted without
considering the overall costs. While it is usually the case that for unseen test instances, there is no
aforehand multi-modal features prepared, modal extraction need to be performed in the test phase at
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first. While for the complex multi-modal data collection nowadays, the heavy computation burden
of feature extraction for different modalities has become the dominant fact that hurts the efficiency.

Traditional modal extraction or feature extraction approaches originated from cascade detection
(Viola and Jones, 2001), which try to rank all modalities or features in a descending rank according
to the discriminative power or in an ascending list according to the extraction cost firstly, then per-
form modal/feature extraction with fixed acquisition budget or specified precision. These methods,
in fact, fixed the modal/feature extraction order for all instances. However, in real applications,
different instances should have different modal/feature extraction order, in detail, the next modality
to be extracted should be decided by the value of those extracted modal features, e.g., aiming at a
particular disease as Fig. 1 shows, after common examination for all patients, different patients will
perform different subsequent examinations according to the results of the common examination. In
other words, to predict an unseen instance as efficient and accurate as possible, we need to figure
out a modal extraction for the concerned instance individually. For the absence of discriminative
modal feature values on the unseen instances, it is supposed that for all test instances, there are a
same “initial modality”, which can be the most likely to be available in raw data, e.g., the common
examination of majority disease, the “initial modality” can be the blood routine tests; for image
data, the “initial modality” can be the pixels values (RGB or gray levels).

Aiming at classifying typical instances with inexpensive modalities while using expensive modal-
ities for atypical instances, this is inspired by adaptive decision methods for feature extraction, and
reduced the overall costs in return (Kusner et al., 2014; Kanani and Melville, 2008), which construct
a tree of classifiers to reduce the average test time complexity of test instances, while maximize their
accuracy. Specially, it is a fact that several modalities usually can be sufficient for predicting some
“easy” instances with high accuracy, e.g., the qualified face images can be detected accurately with
some “simple but powerful” face template features. Thus, for this kind of “easy” test instances, it is
not necessary to extract other kinds of features, while we extra expensive features for some “hard”
instances. This phenomenon suggests spending different efforts of feature extraction on different
test instances to reduce the costs. However, these feature extraction methods are always non-convex
problems to solve, and are difficult to handle the multi-modal data, which have more practical sig-
nificance in real application, e.g., we always extract multiple feature subsets as the blood test shown
in Fig. 4 rather than single feature for classification or other tasks, thus several adaptive decision
methods for modal extraction are proposed (Wang et al., 2014, 2015). Nevertheless, previous di-
rected acyclic graph based methods need to list all the enumeration of probable modal sequences,
which will be combination explosion with large number of modalities.

To solve these problems, in this paper, we proposed a novel end-to-end network DMP (Discrim-
inative Modal Pursuit) approach for serialized modal feature extraction, different from previous
feature selection or dimensionality reduction methods, DMP extracts different modalities for differ-
ent instances, and Fig. 2 gives a difference illustration on the number of features invoked during
testing for DMP, feature selection, from which it can be found that our approach can further reduce
the number of features for testing for the nature of “easy” instances existing. Besides, DMP handles
modalities sequentially, which is more efficient and accurate than previous modal/feature extraction
methods. DMP is inspired by LSTM network, which can predict label and following modality si-
multaneously with a fixed budget, specifically, when a test instance is received, DMP firstly extract
the same “initial modality”, then if DMP is confident to assign the class label, classification will
be made, otherwise, DMP will decide which modality should be extracted next, this procedure will
repeat until the cost budget is overstepped or it can make a confident classification.
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Figure 1: The overall flowchart. For the same disease, patients are always checked with the same
examination first, then partial patients will take different consecutive examinations with
various costs based on the previous examinations, while some “easy” diagnostic patients
can end the examination with high accuracy. The procedure aims at making a convince
prediction with least overall costs.

Section 2 is related work, our approach is presented in Section 3. Section 4 reports our experi-
ments. Finally, Section 5 gives the conclusion.

2. Related Work

The problem of modal extraction for reducing the overall cost has been extensively researched.
Originally, feature selection and dimensionality reduction are generally used for reducing the ex-
penses of feature extraction and can be adapted to modal extraction problems. Song and Lu (2017)
proposed Regularized multilinear regression and selection for automatically selecting a subset of
features while optimizing prediction for multidimensional data; Jian et al. (2016) used a novel
multi-label informed feature selection framework MIFS, which exploits label correlations to select
discriminative features across multiple labels. However, as shown in Fig. 2, feature selection meth-
ods are to select a subgroup of features which are consistently used during the whole test phase.
While the problem to tackle in this paper is to reduce the test feature extraction expenses by choos-
ing different subgroups of features for different instances, and further reduce the feature extraction
costs from modalities. In other words, the goal of this work is aiming at extraction instance specific
modal features in test phase. As for dimensionality reduction methods, the discriminative informa-
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Figure 2: The difference of the number of features used in test phase among Discriminative Modal
Pursuit, feature selection, and dimensionality reduction. In the plots above circles shad-
owed with colors represent the features used (different colors are corresponding to differ-
ent methods), and x1, x4, x5 are “hard” instances which may consume more feature val-
ues for good prediction while x3 is an “easy” one that only need features from 1 modality.
It can be found that feature selection and dimensionality reduction methods use the same
features are all instance, especially for dimensionality reduction, the subspace learned can
be extracted from almost all raw features, i.e., dimensionality reduction methods require
the most feature value extraction costs. While on the other hand, Discriminative Modal
Pursuit adopt different features for different instance, and as a consequence, can reduce
the overall feature extraction cost.

tion are emphasized, and as a matter of fact, almost the entire feature sets from all modalities are
required in a large portion of dimensionality reduction methods. Therefore, the target differences
between this work and general dimensionality reduction are even larger.

Thus, Chen et al. (2012); Zhang et al. (2014); Liu et al. (2008) proposed cascade detection
methods to reduce the overall costs, which first compute the cheap features for filtering out the
negative examples and more expensive are acquired later, however, these approaches require the
fixed acquisition order of features and generalize to multi-class difficultly. Then, Gao and Koller
(2011); Panella and Gmytrasiewicz (2016) posed the system as a PO-MDP problem with generative
methods by selecting modalities based information gain of unknown modalities, while they always
require estimation of the probability distributions. To overcome this problem, Karayev et al. (2013)
used imitation learning approaches, which turn to predict the reward or oracle action, nevertheless,
these methods require operate on a wide range of missing feature patterns.

Consequently, in order to learn efficient and effective instance specific modal/feature extraction
model for cost reduction, Xu et al. (2013) introduced cost-sensitive trees of classifies (CSTC), CSTC
is a global empirical risk minimization problem using tree structure, which applied internal decision
rules and leaf classifiers, jointly with alternative minimization techniques; Kusner et al. (2014)
proposed approximately sub-modular trees of classifiers ASTC, a variation of CSTC which employs
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a different relaxation using approximate sub-modularity, and significantly reduced the training time;
Nan et al. (2015) proposed random forests to efficiently learn a budgeted decision rules, however,
they are all the feature extraction methods, which always optimize and expand to modal extraction
difficult, recently, Wang et al. (2015) proposed an adaptive sensor acquisition system, which is
modeled as a directed acyclic graph (DAG) for resource constrained prediction. Nevertheless, it
needs to list all permutations of modal sequence in the training phase.

In this paper, we proposed the DMP (Discriminative Modal Pursuit) approach for learning a
serialized modal extraction decision methods inspired from LSTM. Specially, with the given raw
multi-modal training data, we learn an instance specific discriminative modal extraction method. It
is required to answer two closed related questions, i.e., which modality should be extracted next?
when to stop extracting new modality and make a prediction? Consequently, when presented with
an unseen instance, we would extract the most informative and cost-effective modal sequence for
the instance. Empirical study shows the efficiencies and effectiveness of DMP, i.e., it is able to
reduce the modal extraction cost and achieve even better classification performance.

3. Proposed Method

This section mainly gives the detail description of the Instance Specific Discriminative Modal Pur-
suit (DMP) approach after a preliminary notation explanation.

3.1. Notation

Suppose there are N labeled examples for training, which are denoted as T = {xi, yi}Ni=1, where
xi ∈ Rd, yi ∈ {1, 2, · · · , k}. In order to facilitate the discussion, we represent the example xi as
{x1

i ,x
2
i , · · · ,xM

i },M is the number of modality, where xj
i is j-th modality of xi with dj dimension,

thus, there are M disjoint modal features for each examples and the cardinality of the union of M
modalities is d. Meanwhile, different modalities are with various costs, and we denoted the costs of
the modalities as C = {c1, c2, · · · , cM}. Meanwhile, the test instance is denoted as Xt, which only
given the “initial modality”.

Here we consider there are no repeat modalities selected in the same modal extraction sequence
for specific instance. We denote the serial number of modality corresponding to the j-th decision
step of i−th instance as sji ∈ S, 1 ≤ i ≤ N, 1 ≤ j ≤ M , where S = {1, 2, · · · ,M} is the set of
all possible values of sji , i.e., the j-th step selected modality of instance i is xi(s

j
i ), we can denote

the relationship between xi, s
j
i and xm

i as xi(s
j
i ) = xm

i , where sji = m. Note that the modal
features of sji could be different from that of sjk, i 6= k and j 6= 1, because even the same modality
can have different discriminative power on different instances, thus for the i-th instance, we should
extract, e.g., modality A on the j-th step and for the k-th instance, modality B of features should be
extracted instead on the step j, i.e., the feature subset extracting order is heavily depend on specific
instances, while the lengths of modal extraction sequence for different instances are also different.

3.2. Discriminative Modal Pursuit

In this section, the original problem can be considered as a degenerated case, e.g., as shown in Fig. 1
when the patients are checked the same disease, it usually performs the common examination for
every patients first, i.e., blood test. Then, different patients will take different consecutive examina-
tions, i.e., CT, X-Rays, PET-CT etc, which are referred to the results of current examination, while
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Figure 3: The overall flowchart of DMP approach, right part is the decomposition of the left part. As
shown in the schematic, the “initial modality” is same for both training and test data. And
at j−th step, the input modal features are x(sj), shown in blue shadows, it is notable that
different instances can with various input at the same step, and different instances may
with various length of modal extraction sequence. Then we input the modified x(sj) to
the DMP network. With the calculated output features h, we predict the label information
and following modality as the next step input simultaneously. We repeat the procedure
until reach the end criterion.

some “easy” diagnostic patients can end the examination with high accuracy, therefore, there are
particular examination sequence for different patients with least overall cost and high accuracy. In
other words, in our setting, given the complete disordered multi-modal training examples, we need
to efficiently learn an adaptive modal extraction decision method for overall cost reduction, while
maximize the accuracy.

In this situation, the training examples can be denoted as T = {xi, yi}ni=1, which are with
complete disordered multi-modal features, and test instance is denoted as Xt, Note that only the
modality s1 is defined for both the training and test data, while there are no more modality provided
for test instances. For simplicity, the xi(s

1) is the “initial modality”, which can be obtained easily
in applications, e.g., the pixels of raw images, the blood test in disease examinations etc. Based on
the “initial modality”, in order to classify the test instance more efficiently and effectively, there are
two learning tasks should be performed as following:

• Which modality should be extracted next?

• When to stop extracting new modality and make a prediction?

Modal Extraction Decision:
The first question indicates that to classify an unseen test instance efficiently, modalities with more
discriminative abilities should be extracted if previous modalities are difficult to make a convince
prediction, otherwise, some “easy” modalities can be selected. To answer the question, it is needed
to design an adaptive modal extract decision method to automatically extract the next informative
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and discriminative modality based on aforementioned modalities. Because even the same modality
can have different discriminative power for different instances, the next modality to be extracted
should be related to the instance’s extracted modal features.

Without any loss of generality, we denote the modal sequence of i−th instance to be learned as
si = {s1i , s2i , · · · , ski }, k ≤ M , k is different for different instances. It obviously indicates that for
the i-instance, when the initial modality s1i is given, then we will extract s2i modality and so forth.
At the t-th step, the “modal extraction sub-sequence” can be denoted as sti = {s1i , s2i , · · · , sti} ∈
X , t ≤ k, where X is the power set of all possible sequences of modal feature values extracted,
and the modality to be extracted in next step is st+1

i . The first question now can be rewritten as
“given the extracted modal sequence sti, how to decide the next modality st+1

i to be extracted”. The
question can be further formalized to learn an adaptive decision map function: G : X → Ŝ, where
Ŝ is the set consisted of all possible values of sji ∈ {S − sti}, which means there have no repeat
modality in the same modal extraction sequence.

As a matter of fact, the goal of learning adaptive decision map G needs to utilize the previous
extracted modal features. We put forward a novel end-to-end deep network structure DMP inspired
from LSTM network (Graves and Schmidhuber, 2005), previous LSTM network used purpose-built
memory cells to store information, which can be considered as the previous selected modalities,
and is better at finding and exploiting long range information. It is notable that the input of LSTM
orients to the corresponding data of the sequence in each step, thus the map function G is equivalent
to H → Ŝ, where H is the space of the output in each step. In each step of DMP, the input is the
extracted modal features of last step, then regard the predicted modality as the input for next step,
these procedures repeat until reaching the stop criterion. The overall flowchart of DMP approach is
shown in Fig. 3, the right part is the spread of left part in shadow.

In detail, firstly, with the multi-modal training examples T , considering the dimensions of dif-
ferent modalities is heterogeneous, which is difficult input to the network. Thus, as shown in the
bottom of left part in Fig. 3, the extracted modality at t−th step can be represented as st, and the
raw input modal features at t−th step can be denoted as x(st). Then, we modify the raw input
x(st) ∈ Rdst to x̂(st) = [x̂1, x̂2, · · · , x̂M ] ∈ Rd, in which x̂j has real values if j = st, otherwise,
x̂j = 0. And we denote the x̂(st) as the new input of the network. Finally, the output features of
DMP network can be represented as ht ∈ Rh by calculating among several layers by the following
equation:

it = σ(Wxix̂(st) +Whiht−1 +Wcict−1 + bi)

f t = σ(Wxf x̂(st) +Whfht−1 +Wcfct−1 + bf )

ct = ftct−1 + ittanh(Wxcx(s(t−1)) +Whcht−1 + bc)

ot = σ(Woxx̂(st) +Whoht−1 +Wcoc
t + bo)

ht = ottanh(ct)

where the weight matrices from the cell to gate vectors (e.g. Wxi) are diagonal, the b terms denote
bias vectors (e.g. bi is hidden bias vector), and i, f , c and o are respectively the input gate, forget
gate, output gate and cell activation vectors, all of which are the same size as the hidden vector h.
And all the parameter facts in network can be denoted as Θ.

Then, at the t−th step, we want to make the label prediction and modal prediction simultane-
ously with all the previous outputs {h1,h2, · · · ,ht−1}. Thus, we directly stack the whole previous
outputs as ĥt = [h1,h2, · · · ,ht−1] ∈ R(t−1)h, and arrange the ground truth prediction and modal
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prediction in parallel to the stacked output features ĥt. The fully connected weights between ĥt and
label concepts can be organized as a linear mapping matrix V t together with a nonlinear softmax
function. Besides, in this parallel structure, there are also linear connections between the output
features and the modal prediction layer, which is also a full connection structure, these weights can
be denoted as U t. It is notable that there are independent mapping matrix V and U in each step and
maximum M modalities can be extracted in a sequence.

As a general training procedure, it focuses on reducing the errors made in the current status of
the network. Considering there are two predict targets in parallel in the network as shown in the
top of left part in Fig. 3. Without any loss of generalities, the loss function implied in the parallel
network structure is:

L(Θ, V 1, V 2, · · · , VM , U1, U2, · · · , UM ) =

N∑
i=1

sMi∑
j=s1i

(`(f(xi(j)),G(xi(j)), yi) + λLreg), (1)

Where `(f(xi(j)),G(xi(j)), yi) is the loss function of label prediction and modal prediction, Lreg

is the regularization of the parameters. Note that each step is independent with each other, and we
can divide the Eq. 1 into M subproblem, M is the number of modalities. Meanwhile, different
instances may have various lengths of modal sequence, in other words, the loss of i−th instance
will be 0 if it has stopped at t−th step. Thus, at t−th step, the loss function can be represented as:

Lt(Θ, V t, U t) =
N∑
i=1

(`(f(xi(s
t)),G(xi(s

t)), yi) + λLt
reg), (2)

where

`(f(xi(s
t)),G(xi(s

t)), yi) = ˜̀(f(ĥi(s
t), yi)) + ˆ̀(x̂i(s

t),G(ĥi(s
t)));˜̀(f(ĥi(s

t)), yi) = yi log g(f(ĥi(s
t)));

ˆ̀(x̂i(s
t),G(ĥi(s

t))) = −1

2
‖X̂i(s

t)G(ĥi(s
t))− x̂i(s

t)‖2F (1− ˜̀(f(ĥi(s
t)), yi)).

Here x̂i(s
t) is the transformation of the raw input xi(s

t), ĥi(s
t) is the stacked output features of

t−th step with input x̂i(s
t), ˜̀(f(ĥi(s

t)), yi) is the label prediction loss function (˜̀can be with any
convex loss functions), in which f(ĥi(s

t)) is the prediction of ĥi(s
t), we define as linear function

ĥi(s
t)V t + bV t for simplicity here, bV t is the bias for predictors of ĥi(s

t), g is a softmax operator.
It it notable that G(ĥi(s

t)) ∈ Ŝ is the modal prediction of ĥi(s
t), we also define as linear function

ĥi(s
t)U t+bUt , bUt is the bias for predictorsU t. Finally, we select the modality with maxG(ĥi(s

t))
prediction as the result.

The main targets of DMP are closely related to the ˆ̀(x̂i(s
t),G(ĥi(s

t))), which is the loss of
modal prediction, as a matter of fact, the raw data are disordered, thus there have no ground truth for
modal prediction, however, the main fact of deciding which modality need to be extracted with pri-
ority is the current modal importance, which generally represent by the classification performance:
1 − ˜̀(f(ĥi(s

t)), yi), reciting that more discriminative modalities should be extracted if current
modality is weak, thus, modal discriminative ability should also be considered, many discriminative
ability measures are related to the distances within neighborhoods, hence X̂i(s

t)G(ĥi(s
t))− x̂i(s

t)
measures the distance between prediction modal and current modality, where X̂i(s

t) ∈ Rd×M is
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Algorithm 1 Training Algorithm For DMP

1: Input
• T = {(xi, yi)}Ni=1, C = {c1, c2, · · · , cM}: Training data with raw multi-modal features

and costs; max-iter: k; Budget: cost budget cthr and prediction confidence threshold athr.
2: Output

• G: Learner to predict which subset of features should be extracted in next step
• f : Classifier trained with acquired sequence modal features

3: Steps:
4: Modify the raw multi-modal data xj

i ∈ Rdj to x̂j
i ∈ Rd with the same dimension

5: repeat
6: Create Batch: Randomly pick up n examples from T without replacement
7: Input the “initial modality” x̂i(s

1), i = 1, 2, · · · , n
8: for t = 1, 2, · · · ,M − 1 do
9: if ĉti ≤ cthr and ati ≤ athr then

10: Calculate the loss Lt in Eq. 2;
11: Weight Propagation step: Obtain the derivative ∂Lt/∂V t, ∂Lt/∂U t, ∂Lt/∂Θ;
12: Update parameters V t, U t,Θ;
13: Extract the modality with maxG(ĥi(s

t)) as the next input;
14: else
15: Define the Lt

i = 0;
16: end if
17: end for
18: until converge or reach the max-iter: k

the combination of the transformed prediction modal feature values, each column corresponds a
prediction modality. In general, we consider the modal importance is related with the prediction
performance, and we wish to extract the modalities that are always from current modality if the
importance is weak, which will be more discriminative. By simultaneously considering the modal
specific property and the modal power between input modal features and neighborhoods. Lt

reg can
be any convex regularization, in order to facilitate selecting the most discriminative modality with
least overall cost, in this paper, we choose Lt

reg as: ‖V ‖22 + ‖U‖22 + ‖CG(hi(s
t))‖22, where C is

the vector of modal cost corresponding to the predict modalities of G(hi(s
t)), note that there have

no repeated modalities in the same modal sequence, so we will set the c of the extracted modalities
before large enough. The parameter λ controls the trade-off between the loss and regularization. In
the training procedure, the derivatives are taken with the help of back propagation technique. The
detail training procedure is shown in Alg. 1.

Stop Criterion:
It is notable that there is no need to obtain the full modal extraction sequence for each test instance,
because instances can be predicted accurately with a subset of modalities in most case. In fact, our
second question also implies that to efficiently classify an unseen test instance, we need to define
a stopping criterion for our framework. When the modal extraction process reaches the criterion,
further extracting of new modalities will be stopped and the label of the concerned instance will be
predicted based on the extracted modalities.
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Two kinds of stopping criteria are selected in this work. The first one is the modal extracting
cost budget, cthr provided by users, and we define the accumulated cost at t−th step as ĉt = c(s1)+
c(s2) + · · ·+ c(st). Another kind of stopping criterion is based on the confidence of the prediction
for the instance, which means the DMP choose to stop, and we define the prediction confidence at
t−th step as ât.

Prediction Procedure:
In the test phase, all the instance are only given the “initial modality” x(s1) and the cost budget
cb, with the trained decision learner G and label prediction classifier f , we input “initial modality”
x(s1), then run the instance through the learner G and obtained the modal extraction sequence s
with final prediction label from f .

4. Experiments

In the serialized modal extraction problem, DMP can classify new instances only with the “initial
modality” of least cost. In this section, we will provide the empirical investigations and perfor-
mances of DMP. In particular, investigations on 2 real world small datasets and 5 large datasets,
i.e., letter classification, satellite classification, the electron neutrinos classification, forest cover
classification, image classification (Cifar, NUS, Scene).

In 3 small datasets, we use the multi-modal features given by the raw data. While in 3 large
datasets, there are no explicit modal partitions, and we calculate the information entropy gain for
each features, then divide the features into different modalities as the same number in (Wang et al.,
2015). For 3 small datasets and NUS, Scene datasets, 66% instances are chosen as training set
and the remains are test set. In other three large datasets, training and test splits are provided by
(Wang et al., 2015), i.e., there are 45,523/19,510/65,031 examples in training/validation/test sets
for MiniBooNE dataset, 36,603/15,688/58,101 examples in training/validation/test sets for Forest
dataset, 19,761/8,468/10,000 examples in training/validation/test sets for Cifar-10 dataset. We re-
peat experiments 30 times on each dataset, the average error rates are recorded and evaluated. The
parameter λ in the training phase is tuned in {0.1, 0.2, · · · , 0.9}. When the variations between the
objective value of Eq. 1 is less than 10−5 in iterations, we consider DMP converges. We run the
following experiments with the implementation of an environment on NVIDIA K80 GPUs server
and our model can be trained about 290 images per second with a single K80 GPU.

Some of the previous sequence modal extraction methods can be used, thus, DMP is compared
to the novel used modal extraction method, i.e., LP, DAG. For DMP can also be degenerated to
feature extraction approaches, CSTC, ASTC, Greedy Miser are also compared in our experiments.
In detail, the compared methods are listed as:

• Lptree: first applies the LP approach to learning the modal trees as (Joseph Wang and
Saligrama, 2014), and then construct trees containing all subsets of sensors as opposed to
fixed order cascades (Wang et al., 2015);

• DAG: proposes an adaptive sensor acquisition system modeled as a directed acyclic graph,
where sensors can be regard as modalities (Wang et al., 2015);

• Greedy Miser: incorporates the feature extraction cost during training to explicitly minimize
the cpu-time during testing, which is a straightforward extension of stage-wise regression and
is equally suitable for regression or multi-class classification (Xu et al., 2012);
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Table 1: The avg. error rates and feature extraction cost with compared methods of small datasets.
The significant best classification performance on each dataset is bolded. Extraction cost
is defined as the average modal/feature used of all test instances.

DMP Lptree DAG DMP Lptree DAG

Average Error Rates (mean±std.) Extraction Cost (mean±std.)

Letter .164±.031 .180±.032 .179±.024 2.867±.046 3.000±.000 2.931±.013
Landsat .106±.020 .130±.013 .130±.006 3.996±.007 4.000±.000 3.735±.045
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Figure 4: Average number of modalities acquired vs. test error comparison.

• CSTC: is a global empirical risk minimization problem using tree structure, which applies in-
ternal decision rules and leaf classifiers, jointly with alternative minimization techniques (Xu
et al., 2013);

• ASTC: proposes approximately submodular trees of classifiers, a variation of CSTC which
employs a different relaxation using approximate submodularity (Kusner et al., 2014).

4.1. Small Datasets

In small datasets, 2 previous datasets for budget cascades are tested: the Letter dataset consists of
modalities extracted from hand written digits, i.e., the first modality is with five features generated
from position and pixel counts, the next modality is with 7 features in the second stage correspond
to more complex features such as spatial moments, and the final modality consists 4 features in
stage 3 correspond to the most complex features, such as edge based features. Landsat data consists
of 3 × 3 pixel neighborhoods taken from a satellite image at four different hyper spectral bands,
specifically, the four spectral values for the top-left pixel are given first followed by the four spectral
values for the top-middle pixel and then those for the top-right pixel, and so on with the pixels read
out in sequence left-to-right and top-to-bottom. Thus, the four spectral values for the central pixel
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Table 2: The avg. error rates and feature extraction cost with compared methods of large datasets.
The significant best classification performance on each dataset is bolded. Extraction cost
is defined as the average modal/feature used of all test instances.

DMP CSTC ASTC Greedy Miser DAG

Average Error Rates (mean±std.)

MiniBooNE .082±.042 .160±.035 .103±.027 .073±.055 .089±.045
Forest .137±.029 .249±.044 .236±.024 .144±.038 .213±.030
Cifar .291±.013 .335±.025 .339±.035 .295±.067 .315±.047
NUS .351±.006 .357±.016 N/A .361±.038 N/A
Scene .297±.046 .317±.079 N/A .341±.060 N/A

Extraction Cost (mean±std.)

MiniBooNE 42.000±0.000 45.123±0.091 45.074±0.075 43.095±0.083 50.000±0.000
Forest 38.040±0.709 49.020±0.655 45.140±0.959 42.094±0.751 34.523±0.751
Cifar 250.000±0.000 239.950±0.679 225.293±0.506 228.853±0.000 250.000±0.000
NUS 1.000±.000 1.000±.000 N/A 1.000±.000 N/A
Scene 0.829±.052 0.987±.065 N/A 0.715±.033 N/A

are given by attributes 17,18,19 and 20, which can be denoted as 4 different modalities. And the
objective is to correctly classify the soil type. The cost of each modality sets equal in raw data.

The small datasets are with partitioned modalities, thus we compare DMP with the novel used
modal extraction methods, i.e., LP and DAG used in (Wang et al., 2015). It is notable that different
modal costs are same in the 2 small datasets, thus, the prediction cost budget is set as {1, 2, 3} in
letter and {1, 2, 3, 4} in Landsat for simplicity, and we randomly select a modality for the “initial
modality”. Table 1 records the minimum error rates and corresponding average extraction cost of
DMP and compared methods. From Table 1, it clearly reveals that on 2 small real world datasets,
the average error rates of DMP are the least, though the average used modalities are not least in
Landsat dataset, we can find that the average error rate of DMP is lower with the same average used
modalities condition from Fig. 4, which means DMP can achieve the best performance with least
modal extraction cost. To investigate the performance of compared modal extraction methods when
modal extraction cost changes,we conduct additional experiments and record more results, and a
detailed classification performance on different average used modalities are recorded in Fig. 4. From
these subplots in Fig. 4, we can find that the error rates of DMP decrease faster than the compared
methods, i.e., in Letter dataset, when the cost budget is 2, the downtrend of DMP is significant,
which means that the DMP selects the most discriminative modalities based on the previous selected
modalities with least cost. Besides, DMP always achieved the best classification performance with
the same overall cost at last.

4.2. Large Datasets

Then, we examine the performance of the DMP using 5 higher dimensional sets of data previously
used to compare budgeted learning performance.
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Figure 5: Average number of modalities acquired vs. test error comparison.

3 large datasets are used in used in (Wang et al., 2015): MiniBooNE (Asuncion and Newman,
2007) is a binary classification task, with the goal of distinguishing electron neutrinos (signal) from
muon neutrinos (background). Each data point consists of 50 experimental particle identification
variables (features). Forest (Asuncion and Newman, 2007) contains cartographic variables to predict
7 forest cover types. Each example contains 54 (10 continuous and 44 binary) features. Cifar-10
(Krizhevsky and Hinton, 2009) consists of 32x32 color images in 10 classes. 400 features for
each image are extracted using technique described in (Coates and Ng, 2011). However, there
have no partitioned modalities in these cases, and the dimensionality of the data (between 50 and
400 features) makes exhaustive subset construction computationally infeasible, thus, we greedily
construct modal subsets according to the calculated information gain of each features as in (Wang
et al., 2015), then train the DMP over the partitioned modal features. Note that there have no explicit
feature costs, instead, we use the length of the modal features as the cost setting.

Besides, another two large datasets with specific modal partition and extraction cost are also
compared: i.e., Scene Li et al. (2001) and NUS Chua et al. (2009). Scene contains 1, 000 images
of ten categories, each category containing 100 images and there are 60 features in 28 groups are
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generated for each image, including 12 RGB colors, 9 features describing mean hue of 3 × 3 sub-
images, 16 histogram features, 1 contrast features, 4 directionality features, 2 coarseness features,
12 Gabor features and 4 Haralick textures. Features in the same group are extracted together. Fea-
ture extraction time cost varies from 4.0× 10−4 second (RGB color) to 9.6× 10−2 second (Gabor
features). It is notable that the feature extraction time cost of all features is over 1.5 seconds, which
is larger than the prediction time of SVM, i.e., around 0.5 second. This indicates that the feature
extraction time cost dominates the overall costs during testing phase. Similarly, we have another
large scale image datasets compared in the empirical studies: NUS subset contains 19,518 images of
ten categories, and six groups of features extracted from these images, including 64 color histogram
features, 144 dimension color correlogram, 73 edge direction histogram features, 128 wavelet tex-
ture features, 225 block-wise color moments and 500 bag of words based on SIFT descriptions. For
DMP can also compare with feature extraction methods, thus we add the novel feature extraction
methods, i.e., CSTC, ASTC, Greedy Miser. And record the minimum error rates and corresponding
average extraction cost of DMP and compared methods in Table 1. From the results, it clearly
reveals that on 4 large real world datasets, i.e., Forest, Cifar, NUS, Scene, the average error rates
of DMP are the least and for the rest datasets, we achieves the runner-up, considering that DMP

is a modal extraction method and extract a feature subset one step, which is more consistent with
real application, e.g., medical diagnosis, while CSTC, ASTC, Greedy Miser are feature extraction
methods, and need acquire the modalities which include the extracted features indeed. However, the
extraction costs of DMP are also competitive in 5 large datasets, which means more less extraction
cost in real. Meanwhile, to investigate the performance of compared modal/feature extraction meth-
ods when extraction cost changes, we conduct additional experiments changing the extraction cost
and record the classification results on different average used modalities/features in 5. Due to the
page limitation, we list 4 datasets here, i.e., MiniBooNE, Forest, Cifar, NUS. From these subplots
in Fig. 5, we have the similar results with small dataset, that the error rates of DMP decrease faster
than the compared methods, i.e., Forest, Cifar datasets, which means the DMP can expand to large
datasets well.

5. Conclusion

Development of data collection ability has spawned the multi-modal learning, while the cost of fea-
ture extraction in multi-modalities becomes the major burden in testing with multi-modal learners.
In this paper, we propose the instance specific Discriminative Modal Pursuit (DMP) approach, which
can automatically choose the most discriminative feature group with one single modality separately
for each concerned test instances by steps. As a consequence, the overall cost of modal feature
extraction in the test phase can be significantly reduced. Instead of jointly optimizing a highly non-
convex empirical risk minimization problem, we turn this problem to an end-to-end learner, which
can give the label predictions as well as predict which modality to extract simultaneously. In this
way, our DMP approach can reduce the extraction cost, works with limited feature value acquisition
budget, and moreover, it can balance the classification performance and modal extraction cost by
extracting different modalities for different unseen instances. Experiments on 7 real-world datasets
validate the effectiveness of our methods compared with other state-of-the-art methods. It is inter-
esting to place the multi-modal feature extraction problem into reinforcement learning environment,
and how to transfer the learned model between different domain is also an interesting future work.
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